normal C-D bonds are shorter than normal C-H bonds; on the other hand, bridge B-D bonds are postulated to be longer than bridge B-H bonds. While there is no direct experimental evidence to confirm this hypothesis, a recent preliminary electron diffraction study of deuterated diborane reports that the average of B-H terminal and bridge distances in B₂H₆ and the average of B-D terminal and bridge distances in B_2D_6 are almost the same.⁹ Since it seems very likely that the terminal B–D distance in B_2D_6 is shorter than the terminal B-H distance in B₂H₆, it is quite probable that the bridge B-D distance is longer than the bridge B-H distance. However, this point awaits experimental confirmation, possibly by differential neutron diffraction of B211H6 and B211D6.

(9) L. S. Bartell, paper presented before the Division of Chemical Physics, American Physical Society Meeting, March, 1962.

RIAS, 7212 BELLONA AVE. JOYCE J. KAUFMAN BALTIMORE 12, MARYLAND

RECEIVED MAY 2, 1962

Observations on the Hydrolysis Product Distributions for Some Inner Transition Metal Carbides

Sir:

In a recent article, Palenik and Warf¹ reported on the hydrolysis of lanthanum and cerium carbides. The purpose of this communication is to point out some similarities in the hydrolysis product distributions of the rare earth carbides LaC_2 and CeC_2 and the actinide carbides ThC_2 and UC_2 , and to show that the prediction of Palenik and Warf¹ concerning the nature of the ThC₂ and UC₂ hydrolysis products is indeed correct.

In recent investigations in this Laboratory, Kempter and Krikorian² and Kempter³ studied the hydrolysis of ThC and ThC₂ and UC and UC₂, respectively. Although the hydrolysis product distributions from the homotypic carbides ThC₂ and UC₂ appeared to be dissimilar, it was found³ that both consisted of about two-thirds even-numbered carbon atom hydrocarbons, about three-tenths hydrogen plus methane, and a small fraction of catenated odd-numbered carbon atom hydrocarbons. In examining the composition of hydrocarbons, excluding methane, from the 25° hydrolysis¹ of the isomorphous carbides LaC₂ and CeC_2 , one sees a semiguantitative agreement between individual species and between total alkanes, total alkenes, and total alkynes. However, if one sums the even-numbered carbon atom hydrocarbons, the catenated odd-numbered hydrocarbons, and the unidentified components, the agreement is much better. The various summations of hydrolysis products for LaC₂, CeC₂, ThC₂, and UC₂ are shown for comparison in Table I. Hydrogen and methane are not included in any of the totals because Palenik and Warf¹ used liquid nitrogen to condense their samples; in the room temperature runs they obtained about 5 mole % non-condensables. The mole percentages of hydrogen and methane not included in the ThC₂ and UC₂ hydrolysis product totals are 27.2% H₂, 2.35% CH₄ and 14.1% H₂, 17.3% CH₄, respectively. Methane is of course the only non-catenated odd-numbered carbon atom hydrocarbon.

TABLE I

DISTRIBUTION	OF	Hydrocarbon	HYDROLYSIS	PRODUCTS			
OF SOME INNER TRANSITION METAL DICARDIDES							

OF SOME INNER TRANSITION METAL DICARBIDES						
Species ^a	LaC ₁	CeC ₁	ThC:	UC:		
Alkanes	25.07	20.56	49.8	68.9		
Alkenes	11.30	10.00	19.5	28.3		
Alkynes	61.5	67.3	27.8	2.8		
Unidentified	2.2	2.1	2.8°	• •		
Even-no. C	97.6	97.8	92.9	93.6		
Odd-no. C	0.3	0.1	4.3	6.4		

^a All totals expressed in mole % of total catenated hydrocarbons produced in room temperature hydrolysis, ^b Hydrocarbons above $C_{4}H_{z}$.

It also is apparent that the prediction of Palenik and Warf¹ that in the case of thorium and uranium carbides "the two-electron oxidation in the hydrolysis reaction is expected to produce more hydrogen and hydrogenated hydrocarbons than in the case of the rare earth dicarbides" is consistent with the hydrolysis product data for ThC₂ and UC₂.

RECEIVED JULY 9, 1962

⁽¹⁾ G. J. Palenik and J. C. Warf, Inorg. Chem., 1, 345 (1962).

⁽²⁾ C. P. Kempter and N. H. Krikorian, J. Less-Common Metals, 4, 244 (1962).

⁽³⁾ C. P. Kempter, ibid., in press,

LOS ALAMOS SCIENTIFIC LABORATORY C. P. KEMPTER UNIVERSITY OF CALIFORNIA LOS ALAMOS, NEW MEXICO